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• Universality, Turing Completeness

• Sparse Transformers
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Transformers
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Transformers: Permutation Invariant
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Transformers: Proportion Invariant
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Transformers: Sequence Modeling
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Transformers: Universality

Are Transformers Universal Approximators of Sequence-to-sequence 

Functions? (ICLR 2020)
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Transformers: Universality

• Theorem

For every 𝑓: 𝑅𝑛×𝑑 → 𝑅𝑛×𝑑  with a compact support,

there exists a transformer 𝑡

s.t. 𝑑(𝑓, 𝑡) is as small as desired

(Distance between functions)
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Transformers: Universality

• Key proposition 1

∀𝐶 ⊂ 𝑅𝑛×𝑑, 𝐶 compact, there exists a transformer 𝑡,

s.t. ∀𝑈, 𝑉 ∈ 𝐶, 𝑡(𝑈)𝑖 ≠ 𝑡(𝑉)𝑗  if 𝑈𝑖 ≠ 𝑉𝑗 or 𝑈 ≠𝑝 𝑉

(by constructing specific ATT)

(≠𝑝 : not proportionally equivalent)
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Transformers: Universality
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• Key proposition 1

∀𝐶 ⊂ 𝑅𝑛×𝑑, 𝐶 compact, there exists a transformer 𝑡,

s.t. ∀𝑈, 𝑉 ∈ 𝐶, 𝑡(𝑈)𝑖 ≠ 𝑡(𝑉)𝑗  if 𝑈𝑖 ≠ 𝑉𝑗 or 𝑈 ≠𝑝 𝑉



Transformers: Universality

• Key proposition 2

For every 𝑓: 𝑅𝑑 → 𝑅𝑑  with a compact support,

there exists a feed-forward network 𝑡

s.t. 𝑑(𝑓, 𝑡) is as small as desired
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Transformers: Universality

• Transformers are universal sequence models

(through the cooperation of POS + ATT + FF)
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• A Turing machine

𝛿: 𝑄 × Σ → 𝑄 × Σ × 𝐿, 𝑅

Transformers: Turing Completeness
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Transformers: Turing Completeness

• Church-Turing Thesis

Any effectively calculable function can be realized by some Turing machines

-> A computer is either as powerful as Turing machines or less powerful

-> Those who are as powerful are said to be Turing-complete
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Transformers: Turing Completeness

On the Turing Completeness of Modern Neural Network Architectures 

(ICLR 2019)

• Theorem

The class of transformers is Turing-complete
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Transformers: Turing Completeness

• The key proposition

Every Turing machine can be directly realized (state transition, memory 

read/write, move left/right) by a sequence-to-sequence transformer with

 a 1-layer encoder,

 a 3-layer decoder,

 a vector dimension of 2 𝑄 + 4 Σ + 11
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Transformers
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Sparse Transformers
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Sparse Transformers: Adjacency Matrices
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Sparse Transformers: Adjacency Matrices
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Sparse Transformers: Complexity
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Sparse Transformers: Universality

• Theorem

For every 𝑓: 𝑅𝑛×𝑑 → 𝑅𝑛×𝑑  with a compact support,

there exists a sparse transformer 𝑡 with a global adjacency matrix

s.t. 𝑑(𝑓, 𝑡) is as small as desired
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Sparse Transformers: Turing Completeness

• Theorem

The class of the sparse transformers with 𝑂(𝑛) adjacency matrices is 

Turing-complete

23



Sparse Transformers: Graph Theory
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complete star circular Erdős-Rényi
𝐸𝑅(5, 2)



Sparse Transformers: Graph Theory
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Erdős-Rényi
𝐸𝑅(5, 2)

The Average Distances in Random Graphs with 

Given Expected Degrees (PNAS 2002)

• Theorem 1

The average distance (shortest paths between nodes) in 

𝐸𝑅(𝑛, 𝑑) are almost surely in 𝑂( Τlog 𝑛 log 𝑑)



Sparse Transformers: Graph Theory

• Graph Expansion

Expansion 𝐺 ≔ min
𝑆

𝐵

𝑆
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𝑆: subgraph

𝐵: boundary



Sparse Transformers: Graph Theory

• Theorem 2.1

The expansion of a regular graph is bounded 

by 𝜆1 − 𝜆2, where 𝜆𝑖 is the 𝑖𝑡ℎ largest 

eigenvalue of the adjacency matrix

-> Expansion of a graph is related to its 

spectral properties

27

𝑆: subgraph

𝐵: boundary



Sparse Transformers: Graph Theory

• Theorem 2.2

An Erdős-Rényi graph approximates its 

corresponding complete graph spectrally

-> Sparse transformers expand contexts fast like 

full transformers
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Applications: NLP

• Masked Language Modeling (MLM)

Self-supervised learning to give each word a contextualized embedding
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Applications: NLP

• Masked Language Modeling (MLM)
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Application: NLP

• Question Answering (QA)

Find the answer and its supporting 

evidence in a paragraph, a 

document, or multiple documents
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Applications: NLP

• Question Answering (QA)
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Applications: NLP

• Question Answering (QA)
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Applications: NLP

• Classification
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*Excess fraction: proportion of samples longer than 512 words



Applications: NLP

• Summarization

Abstractive summarization via seq2seq learning
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Applications: NLP

• Summarization
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Applications: Genomics

• DNA MLM

Self-supervised learning to give each DNA word a contextualized embedding 

according to its DNA sentence

-> DNA words: learned via Byte-Pair Encoding (BPE)
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Applications: Genomics

• DNA MLM

Self-supervised learning to give each DNA word a contextualized embedding 

according to its DNA sentence

-> DNA sentences:
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Applications: Genomics

• DNA MLM
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*SRILM: n-gram (k-mer) models



Applications: Genomics

• Promoter Region Prediction

Learning to classify a given DNA fragment as a promoter or a non-promoter

sequence
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Applications: Genomics

DeePromoter: Robust Promoter Predictor Using Deep Learning (Frontiers in genetics 2019)
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Applications: Genomics

• Promoter Region Prediction
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*DeePromoter: CNN + LSTM



Applications: Genomics

• Chromatin-Profile Prediction

Learning to predict chromatin-profiling from non-coding genomic sequence
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Applications: Genomics

Predicting Effects of Noncoding Variants with Deep Learning-based 

Sequence Model (Nat Methods 2015)

• 2.4M noncoding variants

• 919 chromatin-profile

• 690 transcription factors (TF) binding profiles for 160 different TFs

• 125 DNase I sensitivity (DHS) profiles

• 104 histone-mark (HM) profiles
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Applications: Genomics

• Chromatin-Profile Prediction
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Earth Day 2022

Energy and Policy Considerations for 

Deep Learning in NLP (ACL 2019)
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