Classroom Population Recognition without Lens

Instructor: 許永真 Mentor: 王詩翰 Author: B00902011楊曜華、b00902059李朋軒

1. Motivation

How many people are there in a classroom? Answering this question opens applications like auto-switching of electronic devices to save energy and to smartly light up the room. And we try to answer this question without the help of cameras, i.e. to find a cheap and privacyaware solution.

3.1 Raw data

Scale: We scale raw data to between zero and one. Train and test data: We randomly split November samples into 5-fold data for training, and spared December samples for testing.

•	Accuracy (%)	Validation		Test	
A		Linear	RBF	Linear	RBF
	All	86.07	92.21	76.18	24.83
Р	IR + sound	80.62	84.34	77.06	79.24

2. Detecting People Going In/Out at Entrance

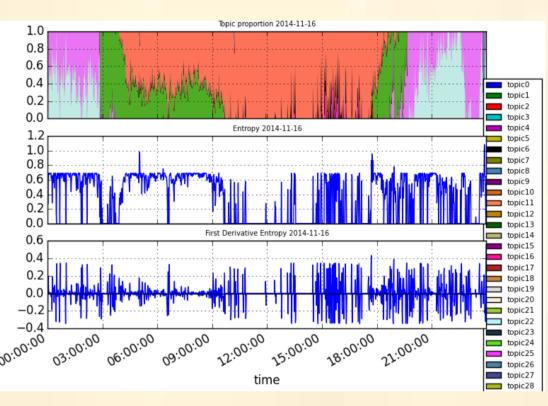
Sensors: one PIR sensor on the door frame of R324 front door; another inside the door.

Data: 900 seconds of 103 times people entering or leaving the room

Goal: To recognize the status – in/out/null of each second

Windowing: 1 seconds before and 3 seconds after each second.

Accuracy: about 90%/90%/55% for the three classes.


3. Model Population of People

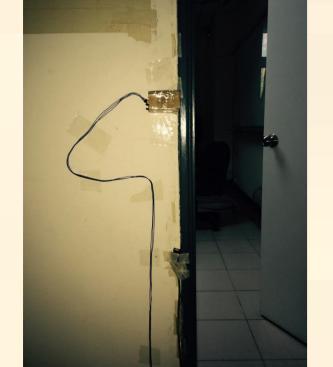
Sensors: PIR*13, sound*9, light*5, humidity*7, temperature*7 and magnetic*3 spread on the ceiling, corners, and walls of R324. Sensor data: Each second from November 1st, 2014 to

A front 3.2 Topic Modeling to Transform Features A front Scale: We scale raw data by transform data into standard Inormal distribution and round it.

Dictionary Generating: We generate vocabulary as sets of sensor-value pairs. 2 kinds of dictionary are generated based on whether we combine sensors of the same type

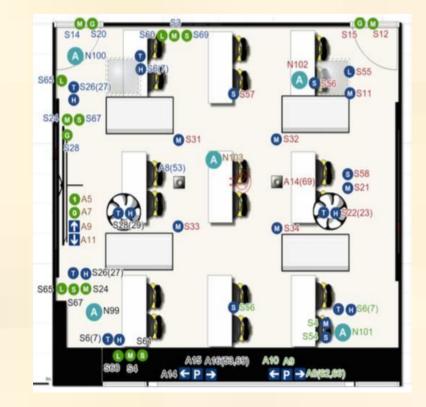
as one sensor. Topic modeling: We use python package Genism to transform the scaled data into topic model- LDA and HDP model. Train and test data:

We randomly split November samples into 5-fold data. Choose 4-fold of it doing 5-fold cross validation, and spared one-fold data as testing data.

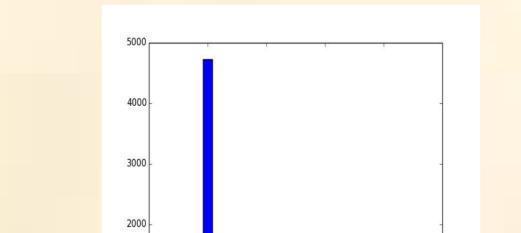

8 (0/)	Validation		Test	
Accuracy (%)	Linear	RBF	Linear	RBF
HDP-combine	58.65	62.16	57.09	59.9

Ground truth: We took pictures every 5 minutes from November 1st, 2014 through November 27th, 2014 and from December 4th, 2014 to December 13th, 2014. And then we labeled them by human.

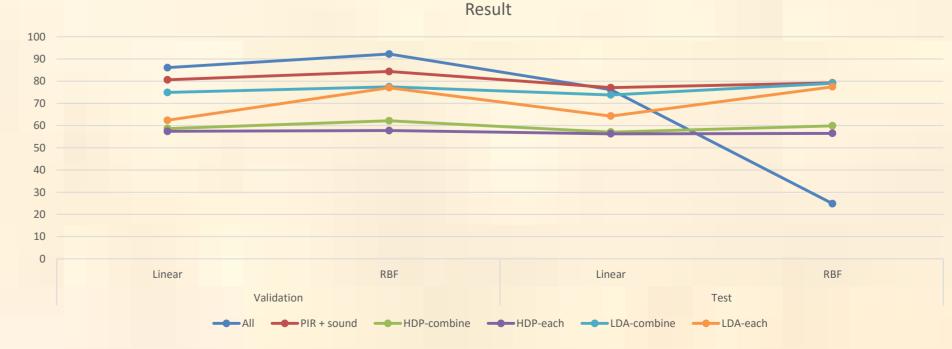
Goal: To recognize population – zero, 1 to 3 or more than 4 people, for each sample.

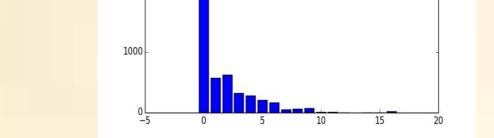

Windowing: 10 seconds before and 10 seconds after a

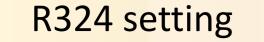
picture.


December 13th, 2014.

PIR setting-1


PIR setting-2




	HDP-each	57.42	57.75	56.3	56.52
	LDA-combine	74.9	77.47	73.79	79.05
	LDA-each	62.39	77.04	64.29	77.47

4. Contribution and Conclusion

We collected and labeled 40 days of classroom data with a variety of 44 sensors and taking pictures as ground truth. Our pilot study shows that direct population modeling may have some advantages over unreliable entrance in/out detection. We analyzed the dataset and provide raw data performance as baseline. We are among the first people, another is 王詩翰(Hans), to predict class room status with topic modeling.

