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Abstract—Distributed word representation is widely used in
Natural Language Processing. However, traditional approaches,
which learn word representations from the co-occurrence infor-
mation in large corpora, might not capture fine-grained syntactic
and semantic information. In this paper, we propose a general and
flexible framework to incorporate heterogeneous features (e.g.,
word-sense, part-of-speech, topic) for learning feature-specific
word embeddings in an explicit fashion, namely Heterogeneous
Word Embedding (HWE). Experimental results on both intrinsic
and extrinsic tasks show that HWE outperforms the baseline and
various state-of-the-art models. Moreover, through the concatena-
tion over HWE and the corresponding feature embeddings, each
word would have different contextual representation under differ-
ent contexts, which achieves even more significant improvement.
Finally, we illustrate the insight of our model via visualization
of the learned word embeddings.

Index Terms—word embedding, distributed word representa-
tion, heterogeneous features.

I. INTRODUCTION

Distributed word representation, which maps each word
into a continuous vector, is an important research topic in
natural language processing (NLP) [1], [2]. It has been proven
to be beneficial in a wide range of applications, such as
neural language model [3], [4], named entity recognition [5],
syntactic parsing [6], and machine translation [7], [8].

Recently, several unsupervised approaches for learning word
embeddings [9]–[12] have been proposed and have had great
results in various NLP tasks. These approaches based on the
contextual distribution of a large corpus for learning word
representations, such as Word2Vec [11] and GloVe [12]. How-
ever, traditional approaches, which learn word representations
from the co-occurrence information in large corpora, might
not capture fine-grained syntactic and semantic information.

To address this issue, some recent approaches have been
proposed to incorporate other information into word represen-
tations. For instance, several knowledge-joined word embed-
ding models are proposed and achieved significant improve-
ments in various NLP tasks [13]–[15]. These approaches ex-
ploit semantic relations between words defined in knowledge
bases to learn more semantic word representation.

Another line of research is Topical Word Embedding (TWE)
[16]–[18], in which topical word refers to a word taking a
specific topic learned by LDA [19] as context. Their basic idea
is to allow each word to have different embeddings in different
contexts. For instance, in [17], topical word embeddings are
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obtained via concatenation over correspond word embeddings
and topic embeddings. Their best TWE model (TWE-1) learns
both kinds of embeddings separately and simultaneously. Since
both kinds of embeddings are separately trained in the same
input layer, the topic information is infused into word embed-
dings in an implicit fashion. For more explicitly infusing topic
information into word embeddings, other variations were also
investigated, such as TWE-2, in which each word-topic pair is
regarded as a pseudoword, and topical word embeddings are
thus learned directly. However, probably due to the problem of
data sparseness, TWE-2 performs much worse than TWE-1.

Inspired by topical word embeddings and aimed to provide
an effective solution to the incorporation of the word and its
contextual features in an explicit fashion, in this paper, we
propose a new approach, namely Heterogeneous Word Em-
bedding (HWE), to explicitly infuse the syntactic or semantic
features into word embeddings: the word embeddings is in
the input layer while its corresponding feature embeddings
are in the output layer, shown in Figure 1. In other words,
given a word, our model’s goal is to predict its correspond-
ing features and contextual words. The experimental results
show that HWE outperforms TWE-1 and other state-of-the-
art approaches on both intrinsic and extrinsic tasks, including
word similarity measure, word analogy, dependency parsing,
document classification, and sentiment analysis.

In addition, HWE is a flexible and general model, in which
different kinds of syntactic or semantic features can be consid-
ered individually or simultaneously. Our experimental results
show that different feature settings for different particular
tasks would achieve more improvement. Moreover, through
the concatenation of HWE and the corresponding feature
embeddings, each word would have different contextual repre-
sentation under different contexts, which achieves even more
significant improvement.

In the end, we also illustrate the two-dimensional PCA
projection of the word embeddings learned by HWE and the
skip-gram, in order to analyze the insight meaning of the word
representation.

Our main contributions are as follows:
• A general and flexible framework to infuse specific fine-

grained information into word embeddings.
• For each specific NLP task, we investigate which features

should be considered in the embedding training.
• The corresponding feature embeddings can be also

learned and used in the proposed framework.
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Fig. 1: Heterogeneous Word Embedding (HWE) learning framework. In this example, the target word wt in input layer predicts
the two context words (wt−1, wt+1) and its two corresponding features (fwt,1, fwt,2).

II. FEATURE CHOOSING

With the development of NLP, we obtain word features
easily by some resources or NLP toolkits, such as WordNet
[20], Stanford Corenlp1 [21]. To measure how the different
types of features affect word embeddings training in the HWE
model, so far we investigate three different feature types
described as follows:
• Word Sense: The word sense contain the semantic infor-

mation to identify word meaning clearly between differ-
ent contexts. In this work, we collect word senses from
WordNet, and apply word sense disambiguation (WSD)
by pywsd2 [22].

• POS: The part-of-speech (POS) tags contain syntactic
roles of words. Taking POS tags as features are widely
applied in many NLP tasks, such as dependency parsing
[23] and named entity recognition (NER) [5]. In this
work, we use a popular NLP toolkit, Stanford CoreNLP,
to identify POS tags for words of every sentence in the
training corpus.

• Topic: In this work, we use a general topic model
Latent Dirichlet allocation (LDA) [19] to obtain the
topic information of each word. The topic model is
based on the word co-occurrence in documents to learn
words’ topic distributions. A word in different contexts
may correspond to different topics. For example, in a
document with the topic technology, the word ‘apple’
refers to a company, and in another document with the
topic food, the word might refer to a fruit.

III. METHOD

In this section, we first briefly introduce the traditional skip-
gram model [11], followed by two state-of-the-art approaches
— Semantic Word Embedding (SWE) [14] and Topical Word
Embedding (TWE-1) [17]. In this paper, we use these models
as baselines. Finally, we introduce our HWE model and show
how to compute the derivatives of the objective function for
optimization.

1https://stanfordnlp.github.io/CoreNLP/
2https://github.com/alvations/pywsd/

A. Baselines

1) Skip-gram: The skip-gram model is based on the word-
context relation in the corpus for learning word representations
[11]. It predicts the context words of a given word; that is, it
learns the word embeddings by maximizing the objective:

Q0 =
1

T

T∑
t=1

∑
−c≤j≤c
j 6=0

logP(wt+j |wt), (1)

where w• are the words, c is the size of the context window,
and T is the length of the word sequence. All the following
models (SWE, TWE, HWE) are approaches of the skip-gram.

2) SWE: Liu et al. proposed the Semantic Word Embed-
ding (SWE) model [14], which constrains word embeddings
using lexical semantic knowledge base. More specifically,
for any word triplet wi,wj ,wk with similarity(wi,wj) >
similarity(wi,wk), the inequality should be held in the em-
bedding space

sim
(
vwi

,vwj

)
> sim(vwi

,vwk
), (2)

where vw• denote the embedding vectors of w•.
In conclusion, SWE maximizes the following objective

function:

Q = Q0 − βD, (3)

where β > 0 is the penalty parameter, and D represents the
inequity constraints.

3) TWE-1: Liu et al. proposed the Topical Word Embed-
ding (TWE) model [17], in which a topical word is a word
that takes a specific LDA-learned topic as context. Of their
various TWE models, TWE-1, whose goal is predicting the
context words of a given word and its topic, performs the best.
Formally, given a word sequence {w1,w2, . . . ,wT } and a topic
sequence {z1, z2, . . . , zT }, where z• is the inferred topic of the



word w•, TWE-1 maximizes the following objective function:

Q = Q0 +
1

T

T∑
t=1

∑
−c≤j≤c
j 6=0

logP(wt+j |zt). (4)

B. Heterogeneous Word Embedding

The HWE model predicts a word’s features and its con-
textual words, as shown in Figure 1. The word embeddings
acquire the feature information more explicitly than TWE-1.
We regard the topic information, or any information such as
word sense or POS, as a type of features.

In the training phase, the objective function is

Q = Q0 +
1

T

T∑
t=1

∑
fwt∈Fwt

logP(fwt
|wt), (5)

where Fwt
is the feature set of the target word wt. Due to the

impracticality of the softmax function indicated by Mikolov
et al., we adopt noise contrastive estimation (NCE) [24] as in
[11] to approximate the probability function.

Let F be the set of all features in the corpus. For each
fwt

, by selecting several negative samples to form a negative
sample set Fn

wt
⊂ F \ {fwt}, we define the sample set Fs

wt
as

the union of {fwt} (the positive sample) and Fn
wt

(the negative
samples). Here, for all fswt

∈ Fs
wt

, we use λfswt to distinguish
the positive and the negative samples: λfswt = 1 for fswt

= fwt
,

and λfswt = 0 for fswt
6= fwt

.
Therefore, the probability function can be approximate as

P(fwt
|wt) ≈

∏
fswt∈F

s
wt

L
(
fswt

∣∣wt). (6)

Note that L is the likelihood function:

L
(
fswt

∣∣wt) = σ
(
vo
fswt
· vi

wt

)λfswt · σ
(
−vo

fswt
· vi

wt

)1−λfswt ,

(7)
where vi

• and vo
• are the input and the output embeddings,

and σ is a sigmoid function.
To simplify the procedure of optimization, we transform the

log-likelihood L(fswt
|wt) to the log format as following:

log[L(fswt
|wt)] = log

[
σ
(
vo
fswt
· vi

wt

)]
λfswt

+ log
[
σ
(
−vo

fswt
· vi

wt

)](
1− λfswt

)
.

(8)

Furthermore, we adopt the same method as [11] did to
calculate the probability P(wt+j |wt) for our optimization.

C. Optimization

With previous inference as eq. (8), the embeddings is
learned to adopt stochastic gradient descent (SGD) algorithm.
First, we show how to compute partial derivative of the
function log[L(fswt

|wt)] with respect to the output embeddings
vo
fswt

and the input embeddings vi
wt

:

∂

∂vo
fswt

log[L(fswt
|wt)] =

[
λfswt
− σ

(
vo
fswt
· vi

wt

)]
vi
wt
;

∂

∂vi
wt

log[L(fswt
|wt)] =

[
λfswt
− σ

(
vo
fswt
· vi

wt

)]
vo
fswt
.

(9)

Next, we update the two embeddings:

vo
fswt
← vo

fswt
+ α

∂

∂vo
fswt

log
[
L
(
fswt

∣∣wt)];
vi
wt
← vi

wt
+ α

∑
fswt

∂

∂vi
wt

log
[
L
(
fswt

∣∣wt)], (10)

where 0 < α < 1 is a learning rate. Note that we update
the input embedding vi

wt
after updating the output embedding

vo
fswt

. For the following experiments tasks, we use the input
word embeddings and the output feature embeddings.

IV. EXPERIMENTS

In this section, we describe the experiment setting and
report all the results to evaluate the proposed HWE model.
We carry out five general natural language processing tasks
— word similarity measure, word analogy, dependency pars-
ing, document classification, and sentiment analysis. Here we
compare the performance of HWE with a baseline model,
the skip-gram, and two state-of-the-art models, TWE-1 and
SWE. Moreover, we also investigate the performance of the
replacement of the topic features with POS and word sense in
TWE-1, denoted as TWE-1-POS and TWE-sense respectively,
in order to get a comprehensive comparison. Please note that
in the tables of evaluation results, unless particular statement
in Tables IV and V, we use HWE-?, such as HWE-POS, to
refer to taking the embeddings of the word (aimed to predict
?) other than the embeddings of ? in the evaluation. Similarly,
we use TWE-1-? to refer to taking the embeddings of the word
(learned together with ? in the same input layer) other than
the embeddings of ? in the evaluation.

A. Experimental Setup

1) Training Corpora: We use the New York Times (NYT)
1994–97 portion of Gigaword v5.0 [25] as the training corpus
to learn embeddings, containing about 436.5 million tokens
and about 1.2 million unique terms.

2) Feature Preparation: For the word sense features, we
extract 95,882 synsets from WordNet and assign each word
to its corresponding synset identities as a word sense. Note
that we do not perform word disambiguation for the training
corpus; rather each word in a sentence may contain several
word senses. For word topic features, we use MALLET’s
LDA [26] implementation3, which uses Gibbs sampling [27],
to extract the topic information corresponding to each word
in a document. We use 400 topics for the larger NYT corpus.

3) Training Hyperparameter Setting: All models are im-
plemented based on the skip-gram model with the same
hyperparameters: a dimensionality of 300, a window size of
10, a number of negative samples 10, subsampling at 10−3,
and a single iteration for the NYT corpus. For SWE [14], we
follow their best parameter setting (β = 0.3), and apply the

3http://mallet.cs.umass.edu/



Corpus
Skip-gram HWE TWE-1 SWE

- POS Sense† Sense-WSD‡ Topic POS Sense† Sense-WSD‡ Topic -

WS-353 56.22 54.76 60.62 58.42 58.81 55.64 60.36 53.56 56.64 55.26
WS-353-S 63.98 62.68 68.24 66.45 66.21 63.58 66.97 62.40 63.61 61.10
WS-353-R 53.42 51.34 56.45 54.25 55.94 52.80 55.38 50.06 55.37 51.80
MC 30 74.11 65.18 77.13 72.39 71.77 67.81 71.48 75.11 76.18 68.99
RG 65 63.45 52.40 67.03 65.94 63.78 57.84 58.62 63.17 66.02 64.42
Rare word 30.67 30.46 32.40 32.91 32.11 26.87 29.78 28.82 27.26 29.94
MEM 63.81 61.23 65.02 65.66 64.98 61.62 64.75 60.34 63.21 64.73
Mturk 287 65.15 66.59 62.44 66.52 66.59 65.67 64.18 66.26 66.62 65.11
Mturk 771 54.75 53.00 58.89 59.53 57.60 53.54 58.73 53.78 54.54 60.95
YP 130 41.18 32.95 55.27 48.02 43.70 37.73 35.68 37.68 37.17 43.13
SimLex 999 34.95 34.06 37.30 36.59 35.30 32.88 37.08 31.65 31.43 45.43
Verb 143 31.53 36.53 36.12 34.87 35.43 30.76 28.22 33.86 34.48 36.22
† Each word predicts multiple senses belong to itself from WordNet (without WSD).
‡ Each word predicts the corresponded sense with applying WSD to the sequences.

TABLE I: Spearman rank correlation (%) on the word similarity task. All vectors are 300-dimension
word embeddings.

Corpus
Skip-gram HWE TWE-1 SWE

- POS Sense Sense-WSD Topic POS Sense Sense-WSD Topic -

Semantic Google 42.20 42.90 43.28 43.72 41.33 40.50 39.42 40.65 40.97 41.62
- - - - - - - - - - -

Syntactic Google 48.64 52.92 48.97 58.42 49.68 44.42 39.46 47.28 44.37 48.07
MSR 41.13 47.66 41.47 52.58 42.21 36.33 29.62 39.76 38.28 39.88

Total Google 45.72 48.37 46.39 51.75 45.89 42.64 39.44 44.27 42.83 45.14
MSR 41.13 47.66 41.47 52.58 42.21 36.33 29.62 39.76 38.28 39.88

TABLE II: Accuracy (%) on the analogy task. All vectors are 300-dimension word embeddings.

synonym-antonym and hypernym-hyponym relations into the
model to train the word embeddings.

B. Word Similarity

1) Task Description: We calculate the Spearman rank
correlation between human judgment and the similarity scores
computed using word embeddings on 12 datasets: MC-30
[28], MEN-3k [29], MTurk-287 [30], MTurk-771 [31],
RG-65 [32], Rare-Word [33], SimLex-999 [34], Verb-143
[35], WordSim-353 (WS-353) [36]. WordSim-353-Similarity
(WS-353-S), WordSim-353-Relatedness (WS-353-R), and
YP-130 [37]. Note that the WS-353-S and WS-353-R are
extracted from WS-353 [38].

2) Experimental Results: As shown in Table I, HWE-
Sense outperforms other feature combination models in most
datasets, as word sense is an important factor for word simi-
larity tasks. Both our HWE-Sense models (Sense and Sense-
WSD) usually outperform the TWE-Sense models, showing
that TWE-Sense models do not completely leverage the ad-
vantage of senses in its implicit fashion. However, the HWE-
Sense models underperform SWE in a few tasks, probably due
to the fact that our HWE-Sense models do not use fine-grained
features for lexical knowledge such as hyponym, hypernym,
and antonym.

C. Word Analogy

1) Task Description: We use two datasets: the Google
analogy dataset [11], containing 19,544 word analogy
questions, and the MSR analogy dataset [11], containing
8,000 word analogy questions. Google analogy questions can
be divided into a semantic subset and a syntactic subset; the
MSR analogy questions are syntactic.

2) Experimental Results: We present the word analogy
results in Table II: the proposed HWE models achieve signif-
icantly better performance than the others. The HWE-Sense-
WSD model performs the best on two types of analogy
questions, and the HWE-POS model also yields the better
performance on syntactic analogy questions. These features
extracted by sequential labeling contain the implicit relations
information from context words. All feature combinations of
TWE-1 underperform the skip-gram model.

D. Dependency Parsing

1) Task Description: We use the Stanford neural network
dependency parser (NNDEP) [39] to train a dependency
parser using the English Penn Treebank (PTB) for evaluating
embeddings. Here, we pre-train word embeddings for each
model on the NYT corpus as the inputs of NNDEP to
train the dependency parsers. Following the default settings
for the NNDEP model, we use 50-dimensional pre-trained
word embeddings and train the NNDEP model using 20,000



Metric
Random Skip-gram HWE TWE-1 SWE

- - POS Sense Sense-WSD Topic POS -

Dev UAS 82.46 87.39 87.77 87.11 87.64 87.22 87.30 87.22
LAS 77.57 83.97 84.52 83.68 84.35 83.79 83.92 83.81

Test UAS 81.96 86.79 87.27 86.76 87.01 86.54 86.89 86.55
LAS 77.43 83.68 84.32 83.60 83.87 83.40 83.77 83.43

TABLE III: UAS and LAS scores (%) on dependency parsing task. All vectors are 300-dimension word embeddings.

Skip-gram HWE-POS

Word 3 3 3 3 3
Feature (POS) 3 3

Dimension 50 50+50 50 100 50+50

Dev UAS 87.39 89.47 87.77 88.23 89.90
LAS 83.97 86.62 84.52 85.00 87.11

Test UAS 86.79 89.14 87.27 87.85 89.48
LAS 83.68 86.72 84.32 84.94 87.16

TABLE IV: Evaluation results (%) on dependency parsing task
with 50/100-dimension vectors.

iterations, following the default setting for NNDEP.

2) Experimental Results: Table III shows the dependency
parsing results with the NNDEP model. The proposed HWE-
POS model performs the best, showing the syntactical infor-
mation (POS) benefits dependency parsing.

As shown in Figure 2, the HWE-POS model converges
faster than other models during training processing. However,
as the iteration increases, the advantage of POS becomes
insignificantly.

We also compare the influence of POS on the skip-gram
model and HWE-POS. We train 50-dimensional word em-
beddings for each model. Furthermore, we concatenate the
two 50-dimensional word and feature (POS) embeddings to
yield 100-dimensional embeddings. Here we train the skip-
gram feature embeddings using the POS sequence from the
NYT corpus. Also, for comparison, we train extra HWE-POS
100-dimensional word embeddings.

As shown in Table IV, HWE-POS outperforms the skip-
gram model on both word embeddings and concatenated
embeddings cases. In HWE-POS, the word and feature embed-
dings share information with each other during the training.
This relation between word and feature embeddings improves
the quality of the dependency parser trained by HWE-POS.
With this concatenation, HWE-POS trains a dependency parser
that yields the best UAS and LAS scores.

E. Document Classification

1) Task Description: We use 20 Newsgroups4, containing
about 20,000 newsgroup documents and 20 categories. The
training set contains 11,305 documents, and the testing set
contains 7,532 documents.

4http://qwone.com/∼jason/20Newsgroups/
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Fig. 2: The UAS score of each model on the development set
versus the number of training iteration.

First, we set 100 topics for the smaller dataset for learning
LDA topic information, and learn the embeddings from
the training set. We generate document representations
by summing up each word embeddings of a document
(or, additionally, concatenating with the summation of the
corresponding feature embeddings). With these document
representations, we train a logistic regression classifier for
document classification. We also compare TWE-1 [17] with
the HWE models on the task.

2) Experimental Results: In Table V, HWE-Topic, which
concatenates the word and corresponding topic embeddings,
largely outperform other models since it leverages the word-
topic feature from LDA for effective use with the context-word
information. Also, most HWE models, which use only word
embeddings to represent document feature vectors, are better
than the skip-gram model in terms of accuracy.

F. Sentiment Analysis

1) Task Description: Following previous work, we use
the Stanford Sentiment Treebank with binary classes (SST-2)
[40] to evaluate different pre-trained word vectors [41]. SST-2
contains 6920/872/1821 sentences for train/validate/test,
each of which is either annotated as a positive or negative
sentiment. Each sentence is represented by its average word
vector for an SVM classifier. We use SVM with the Gaussian
kernel. The hyperparameter γ is set to 1/k, where k is the
number of features. The hyperparameter c for each word
embedding model is determined by the validation split with
a grid search from 10−4 to 104.



LDA Skip-gram HWE-POS HWE-Sense-WSD HWE-Topic TWE-1 SWE

Word 3 3 3 3 3 3 3 3 3
Feature 3 3 3 3 3

Dimension 100 300 300 300+300 300 300+300 300 300+300 300+300 300

Recall 65.65 68.78 69.50 67.88 70.09 71.82 68.71 74.30 72.47 70.52
Precision 65.02 73.70 71.78 72.92 71.83 74.74 72.61 75.41 74.52 72.79
F1 64.62 70.10 69.98 69.01 70.44 72.46 69.54 74.53 72.87 71.01
Accuracy 67.19 69.85 70.57 68.89 71.20 72.74 69.82 75.32 73.47 71.55

TABLE V: Evaluation results (%) of multi-class document classification with 100/300/600-dimension vectors.

Skip-gram HWE TWE-1 SWE

- POS Sense Sense-WSD Topic POS Sense Sense-WSD Topic -

79.63 78.91 79.79 79.79 80.45 78.58 77.81 80.34 79.13 80.18

TABLE VI: SST-2 accuracy (%) on sentiment task. All vectors are 300-dimension word embeddings.

2) Experimental Results: The testing result for each word
embedding model is shown in Table VI. HWE achieves
the best performance (80.45%) over previous baselines the
skip-gram (79.63%), TWE-1 (79.13%), and SWE (80.18%).
With the same added knowledge of POS, Sense, Sense-WSD,
or Topic, HWE performs better than TWE in 3 out of 4
experiments, showing the benefit of the proposed modeling
of semantic information. Of this semantic knowledge, topic
modeling is found to be the most useful for the sentence
sentiment classification task.

V. FURTHER ANALYSIS

A. Visualization

First, we randomly select twelve verb pairs that belong
to the past to progressive relation from the word analogy,
such as ‘ran’ to ‘running’ and ‘moved’ to ‘moving’. We then
project those trained 300-dimension word embeddings into two
dimension space with Principal Components Analysis (PCA).
As shown in Figure 3, these relations trained by the HWE-
POS model in Figure 3b are more smooth and consistent than
those trained by the skip-gram in Figure 3a. In our HWE-POS
model, the past verbs and the progressive verbs tend to be at
the top-left and bottom-left side respectively, while these verbs
are messy in the Skip-gram model. This shows that the HWE
model takes advantage of the syntactically feature, Part-Of-
Speech (POS), to correct the error relations. This phenomenon
accounts for the good performance of HWE-POS model in the
task of word analogy.

In addition, we visualize the effects of topic information
for sentiment analysis besides the improvements shown in
Section IV-F. We randomly select positive and negative af-
fective terms proposed in [42]. Figure 3c and Figure 3d show
the word vectors of the skip-gram and HWE-topic projected
to R2 by PCA. As the skip-gram is known to cluster words
that are functionally similar, many positive and negative words
are clustered together. By using information provided by topic
modeling, HWE is able to make them linearly separable.

B. Heterogeneous Features versus Model Convergence

With the same parameter setting as the dependency parsing
task, we investigate the effect of the iteration to the perfor-
mance. We train a 50-dimensional word embeddings for each
model, without concatenating the feature embeddings.

As shown in Figure 2, the HWE-POS model converges
the fastest with fewer iterations, since the syntactical features
contribute to this task significantly. HWE-POS and HWE-
WSD reaches the better performance than the skip-gram model
the with more iterations.

VI. RELATED WORK

To enhance the quality of the word representations which
learn from the co-occurrence information, some approaches
have been proposed to incorporate other information into word
representations.

Yu et al. [13] have proposed a new objective function
which combines the CBOW with the synonymous words in
knowledge to improve word embedding. To take advantage of
knowledge more effectively, Liu et. al. [14] have proposed a
more flexible method to incorporate semantic knowledge into
the skip-gram. Their approach leverage semantic constraints
in the optimization to learn more sensible word embeddings.
Besides, a retrofitting approach, which adopts lexicons relation
information in a post-processing stage, has been proposed by
Faruqui et al. [15].

Niu et al. [16] have proposed a model Topic2Vec which
incorporates topics information into the Word2vec for learning
distributed representations of topics and words in the same
semantic space. Liu et. al. [17] proposed Topical Word Em-
bedding (TWE) which adopt a similar approach to combine
topics information into the skip-gram. However, the TWE
learn topic embeddings and word embeddings separately on
the same corpus. Li et al. [18] refer that the TWE model,
which combines the results of word embedding and LDA,
lacks statistical foundations. Hence, they have proposed a
generative model which combines word embedding and LDA,
namely TopicVec. It leverages an embedding link function
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(b) HWE-POS (past verb to progressing verb)
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(c) Skip-gram (negative vs. positive)
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(d) HWE-Topic (negative vs. positive)

Fig. 3: (Top) 2-dimensional PCA projection for word pairs holding the past verb to progressing verb relations.
(Bottom) 2-dimensional PCA projection for the negative and positive affective terms.

which models the word distribution in a topic extraordinary
for learning embeddings.

Liu et al. [43] refer that very little research use the part-of-
speech information for learning distributed word representa-
tion. Hence, they propose a new approach for learning word
embeddings with weighted contexts based on part-of-speech
(POS) relevance weights. Furthermore, Levy et al. [44], [45]
replaced the bag-of-words contexts of the skip-gram with
arbitrary contexts, specifically dependency contexts. On the
contrary, our work proposes to predict heterogeneous features
of target words alongside their surrounding context words.

VII. CONCLUSION

We propose an effective and flexible method to improve
word representations, termed HWE. The experimental re-
sults show that our model outperforms various state-of-the-
art approaches. We also find that different feature settings for

different particular tasks yield better performance. Moreover,
through the concatenation of HWE and the corresponding
feature embeddings, one can yield even more significant
improvements. We conclude that HWE-sense works best for
word similarity and semantic analogy, HWE-POS for syntactic
analogy and dependency parsing, and HWE-Topic for docu-
ment classification and sentiment analysis. The package and
the trained embeddings are released on GitHub5.

For future work, we aim to integrate more types of features
in our model to learn word representations that are powerful
enough to be used for multiple tasks. We would also like to
investigate the effectiveness of using domain-specific features,
which are expected to improve further tasks highly related to
specific domains and knowledge, such as biomedical or law-
related NLP tasks.

5https://github.com/emfomy/hwe/
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