Leveraging Linguistic Structures for Named Entity Recognition with Bidirectional Recursive Neural Networks

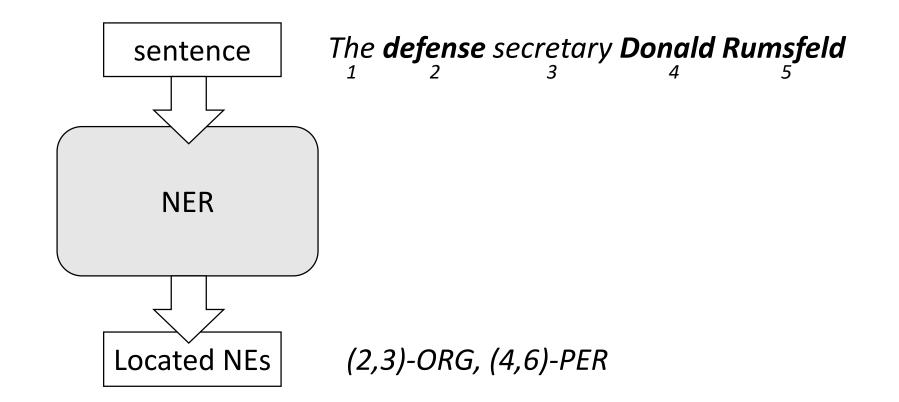
> Peng-Hsuan Li 11/20/2017

Named Entity Recognition (NER) Background

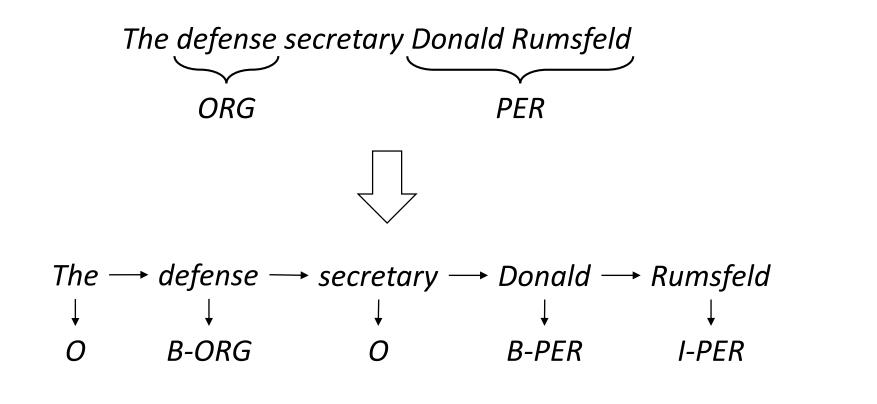
To Locate and Classify Named Entities (NEs)

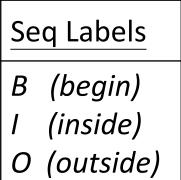
The defense secretary Donald Rumsfeld ORG PER

NE Labels
PER (person)
ORG (organization)

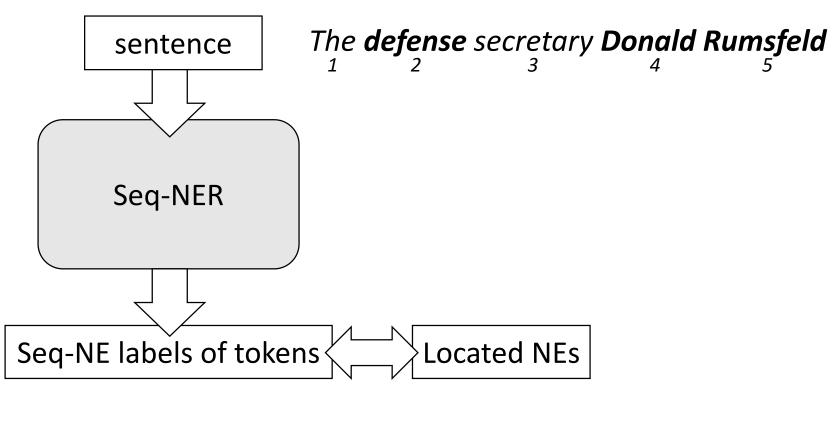


Sequential Labeling NER (Seq-NER)



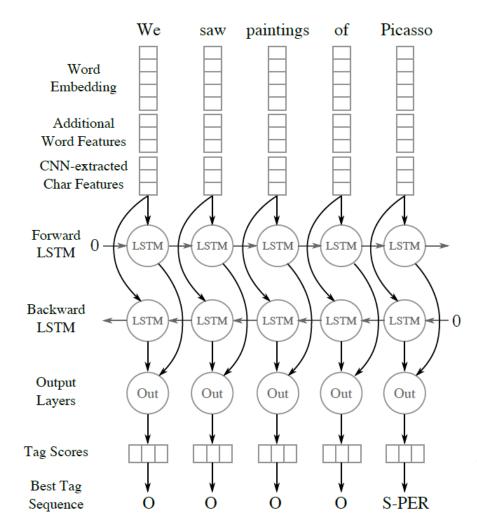


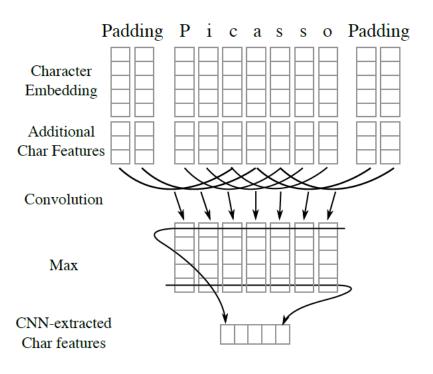
Seq-NER



O B-ORG O B-PER I-PER (2,3)-ORG, (4,6)-PER

Chiu and Nichols (2016)

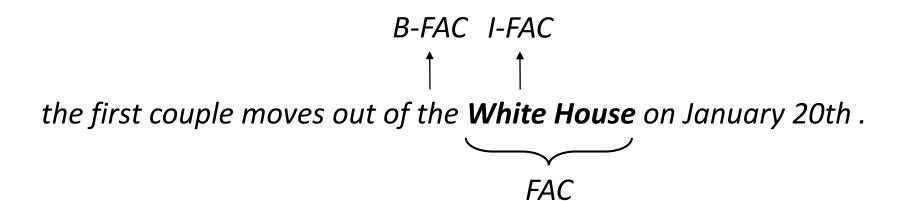




J. P. Chiu and E. Nichols. Named Entity Recognition with Bidirectional LSTM-CNNs. *Transactions of the Association for Computational Linguistics*, 4:357–370, 2016.

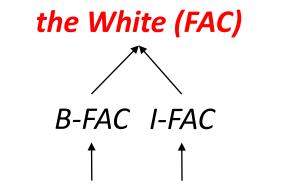
Seq-NER: the Problem Motivation

When Predicted (Begin, End) Are Slightly Wrong



NE Labels FAC (facility)

False Positive: Not Even a Linguistic Unit of the Sentence



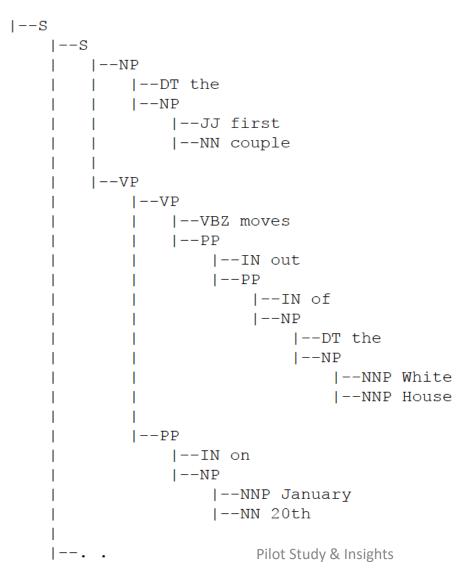
the first couple moves out of the White House on January 20th.

The Problem

• Seq-NER neglects the prior knowledge of linguistic structures

Constituency Structures and NER Pilot Study & Insights

Constituency Structure



OntoNotes 5.0

Split	<u>Sentences</u>	Tokens	<u>NEs</u>	Consistent NEs
Train	59,924	1,088,503	81,828	76,309
Validate	8,528	147,724	11,066	10,267
Test	8,262	152,728	11,257	10,459
Total	76,714	1,388,955	104,151	97,035

Seq-NER Models

	OntoNotes 5.0		
<u>Model</u>	<u>Precision</u>	<u>Recall</u>	<u>F1</u>
Bi-Recurrent	85.7	86.5	86.10
Chiu and Nichols (2016)	-	-	86.41

Removing Non-Constituent Predictions in Post-Processing

		Test		
<u>Model</u>	<u>Const-Only</u>	<u>Precision</u>	<u>Recall</u>	<u>F1</u>
Bi-Recurrent	Х	85.7	86.5	86.10
Bi-Recurrent	0	87.2	85.1	86.14

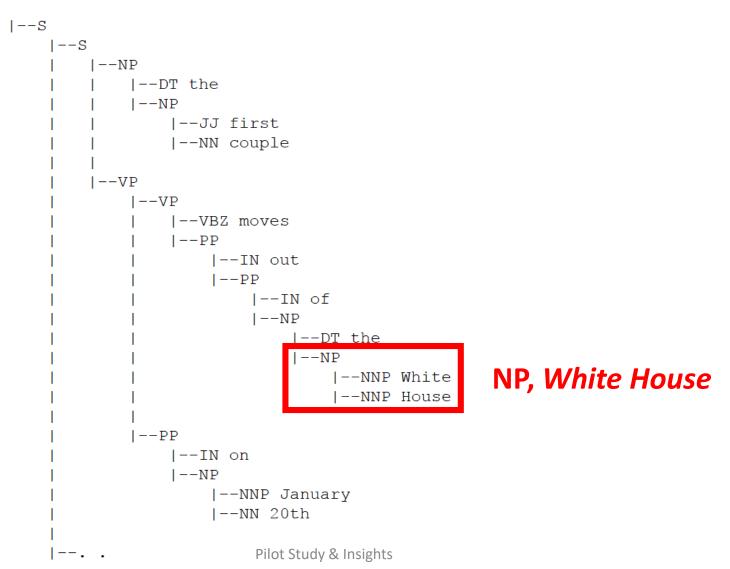
If Constituency Structures and NER Are More Consistent...

<u>Split</u>	<u>Sentences</u>	<u>Tokens</u>	<u>NEs</u>	<u>Consistent NEs</u>
Train	59,924	1,088,503	81,828	76,309
Validate	8,528	147,724	11,066	10,267
Test	8,262	152,728	11,257	10,459

More Consistent... Better Recall

		Test		
<u>Model</u>	<u>Const-Only</u>	<u>Precision</u>	<u>Recall</u>	<u>F1</u>
Bi-Recurrent	Х	85.7	86.5	86.10
Bi-Recurrent	0	87.2	85.1	86.14

If Full Structure Information Are Utilized...



Structure Information Utilized...

Model	Const-Only	Prediction	False Positive	False Negative
Bi-Recurrent	Х	the White	Y	Y
Bi-Recurrent	0	-	Ν	Y
Magic	0	White House	Ν	Ν

Insights: NER Could Improve If

• Inconsistencies between parsing and NER are mitigated

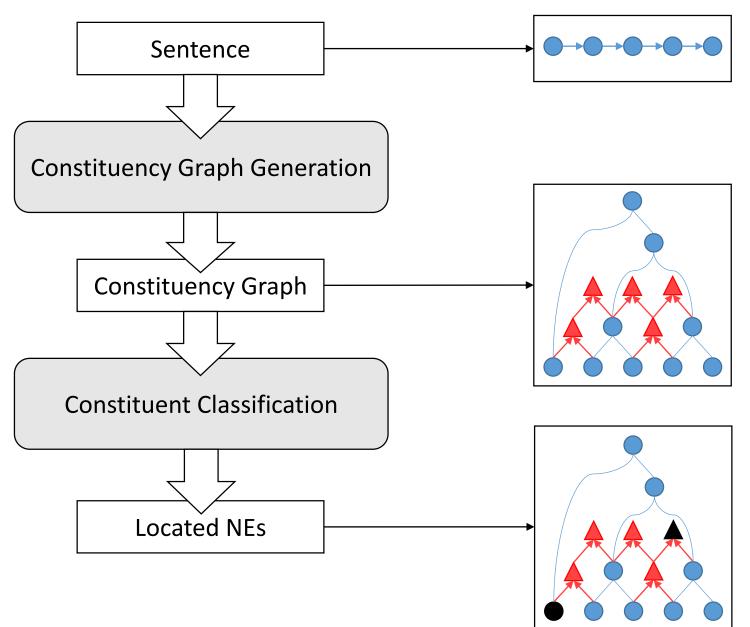
• Prior linguistic structure information is utilized

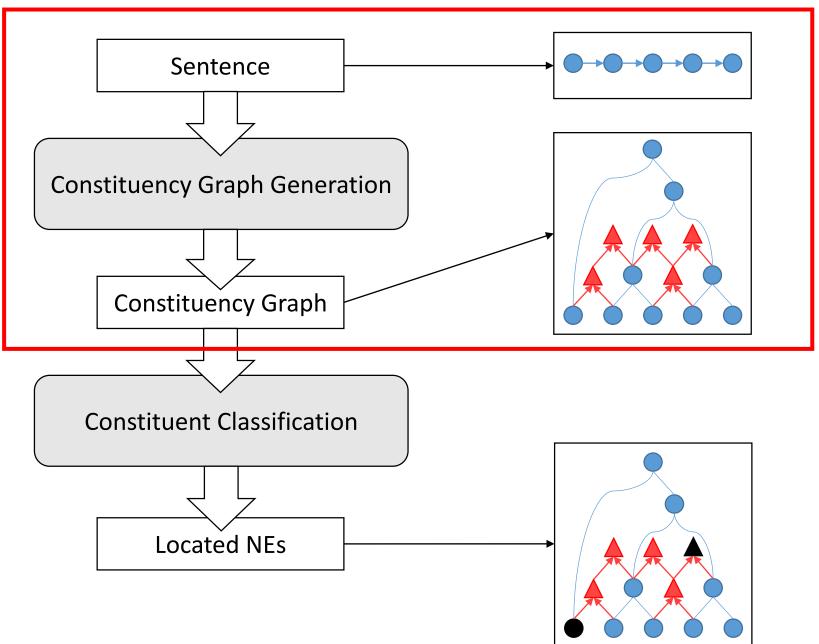
Leveraging Linguistic Structures: the Objectives

• Mitigate the inconsistencies between parsing and NER by restructuring algorithms

• Utilize prior linguistic structure information with constituent-based Bidirectional Recursive Neural Networks (BRNN)

Constituency-Oriented NER Approach





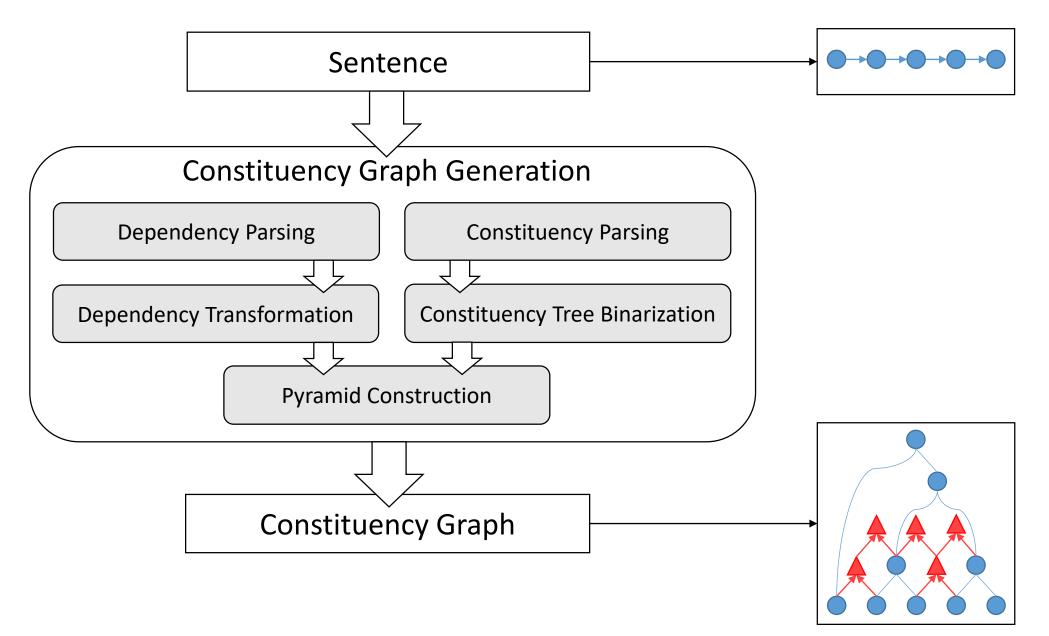
Leveraging Linguistic Structures: the Objectives

• Mitigate the inconsistencies between parsing and NER by restructuring algorithms

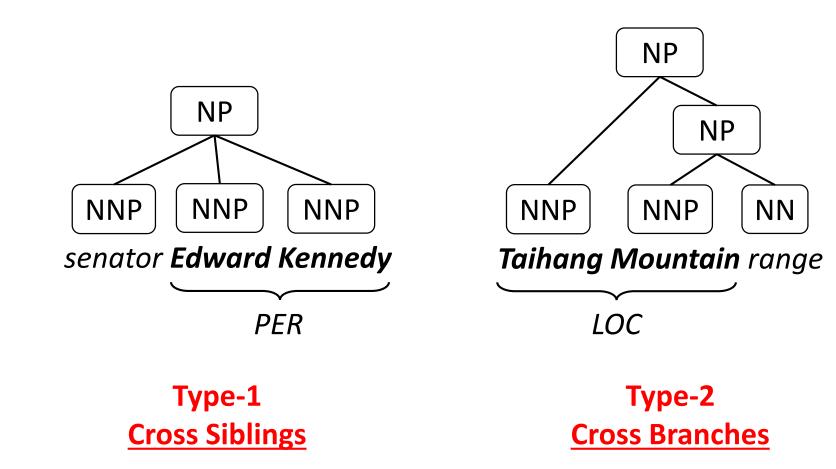
• Utilize prior linguistic structure information with constituent-based Bidirectional Recursive Neural Networks (BRNN)

If Constituency Structures and NER Are More Consistent...

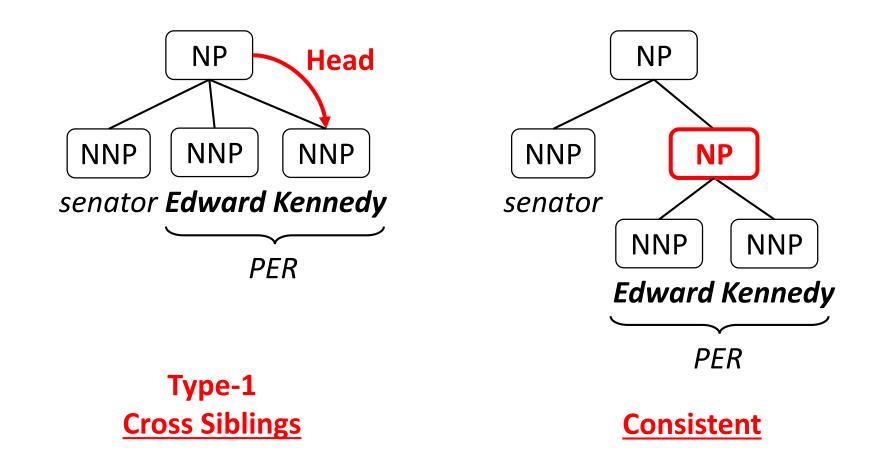
<u>Split</u>	<u>Sentences</u>	<u>Tokens</u>	<u>NEs</u>	Consistent NEs
Train	59,924	1,088,503	81,828	76,309
Validate	8,528	147,724	11,066	10,267
Test	8,262	152,728	11,257	10,459



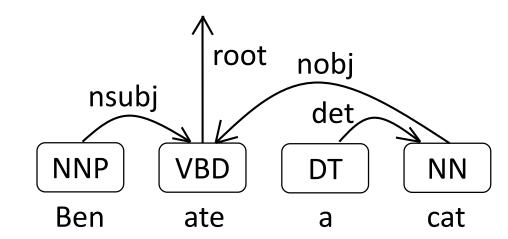
Inconsistent NEs

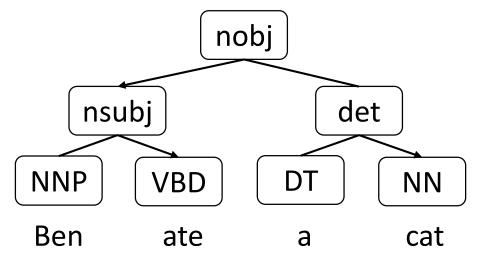


Eliminate Type-1: Constituency Tree Binarization



Eliminate Type-1: Dependency Transformation

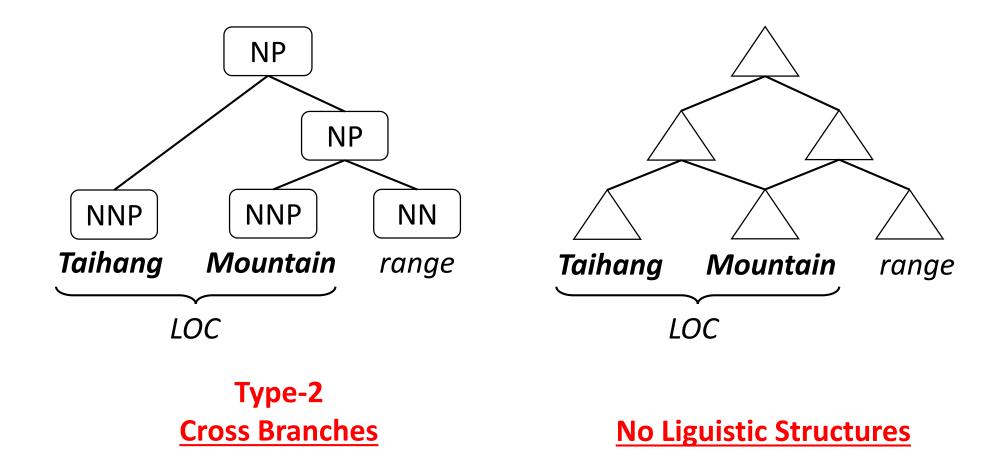




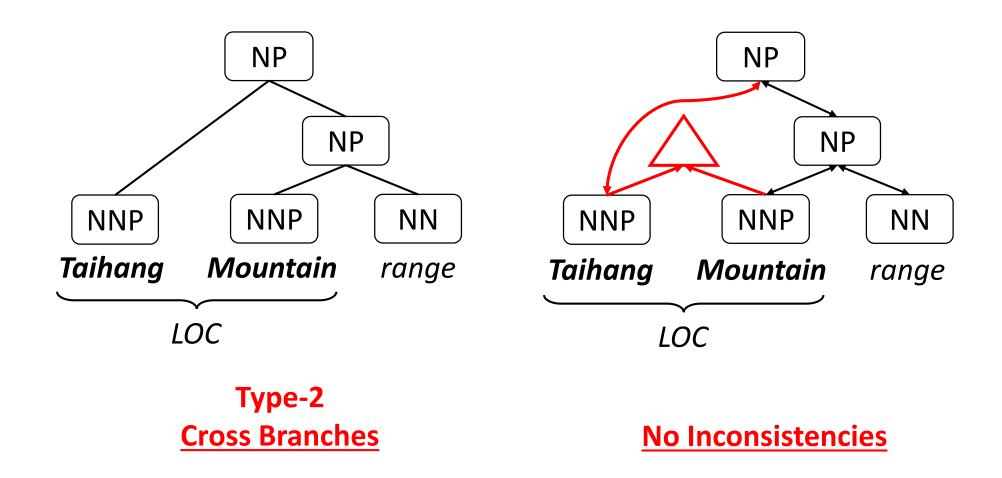
No Constituents

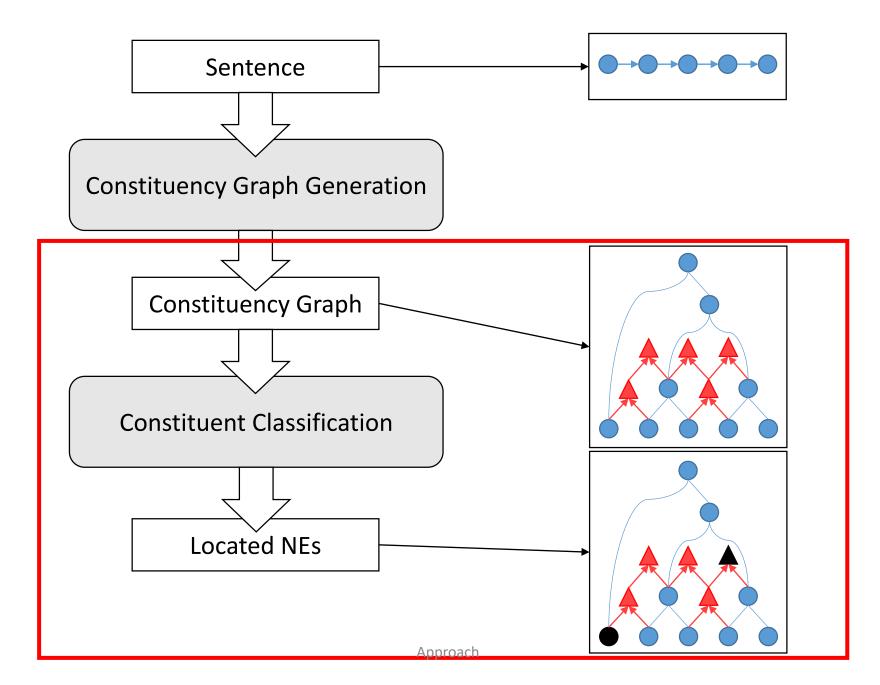
No Type-1 Inconsistencies

Eliminate Type-2: Pyramid Construction



Eliminate Type-2: Pyramid Construction



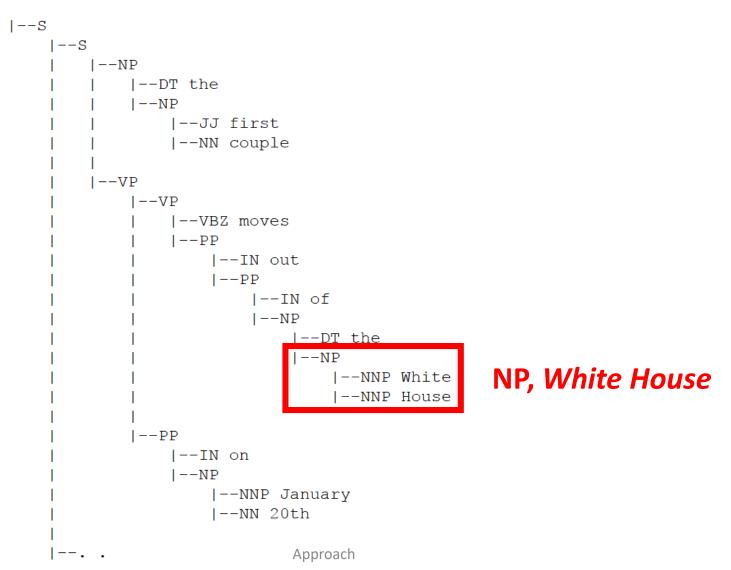


Leveraging Linguistic Structures: the Objectives

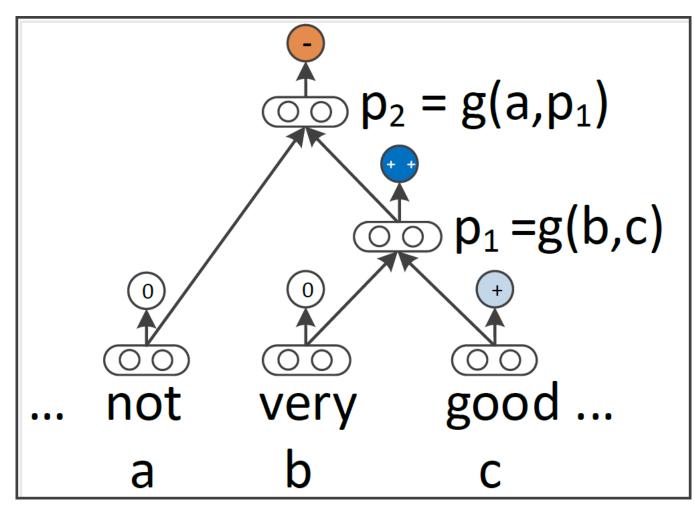
• Mitigate the inconsistencies between parsing and NER by restructuring algorithms

• Utilize prior linguistic structure information with constituent-based Bidirectional Recursive Neural Networks (BRNN)

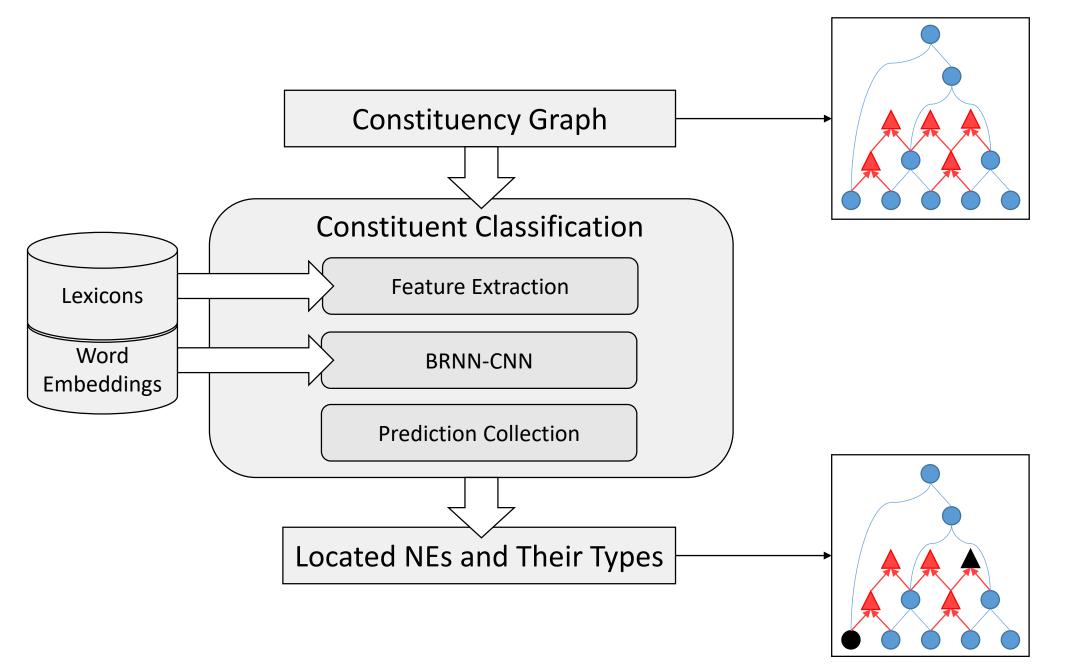
If Full Structure Information Are Utilized...



Socher et al.

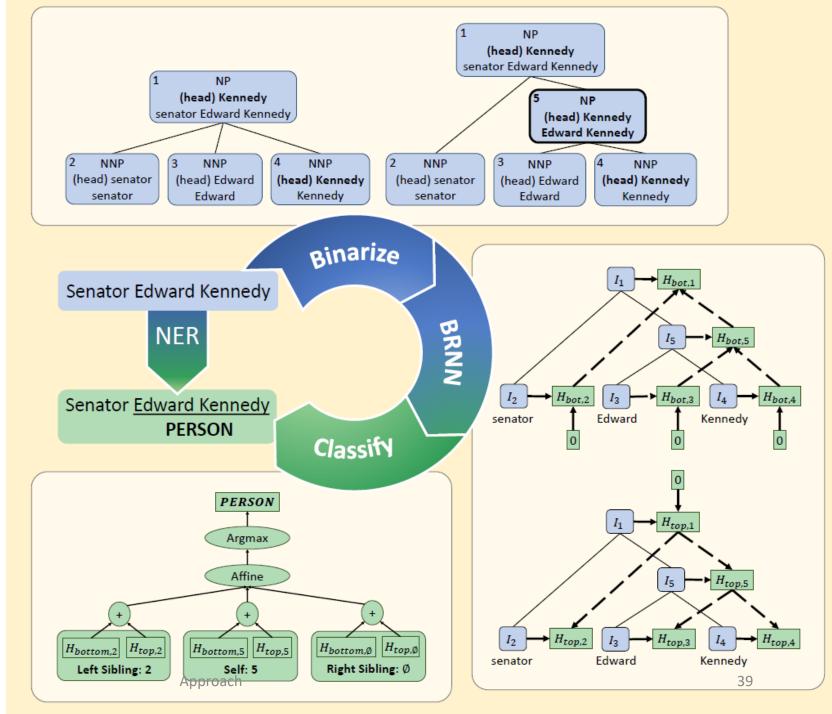


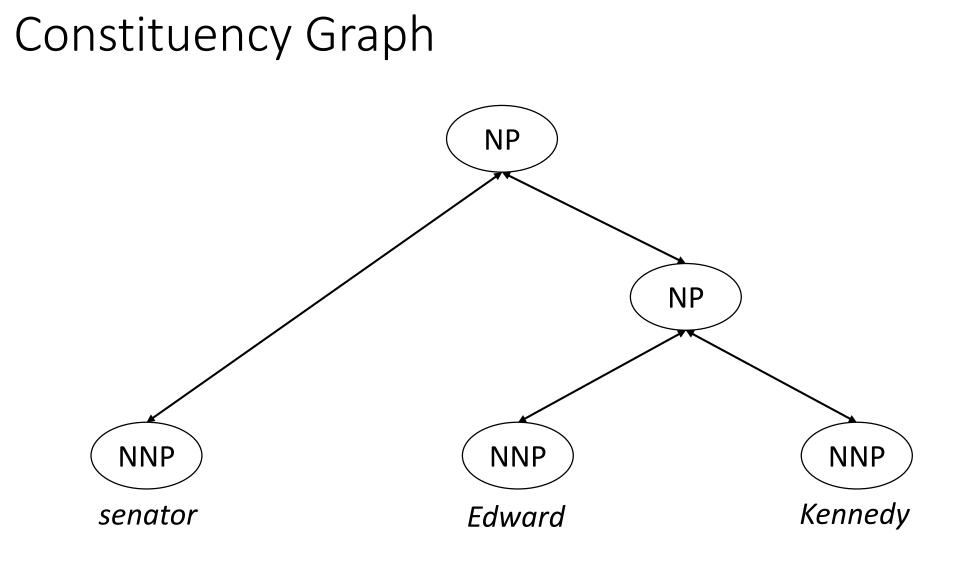
R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing*, pages 1631–1642, 2013.



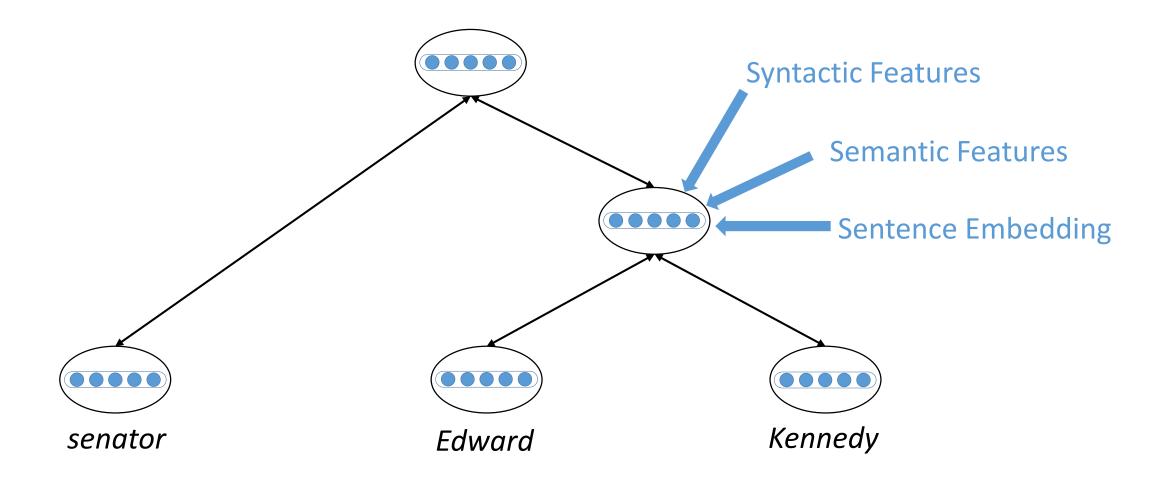
Li et al. (2017)

PH Li, RP Dong, YS Wang, JC Chou, and WY Ma. Leveraging Linguistic Structures for Named Entity Recognition with Bidirectional Recursive Neural Networks. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, 2017.

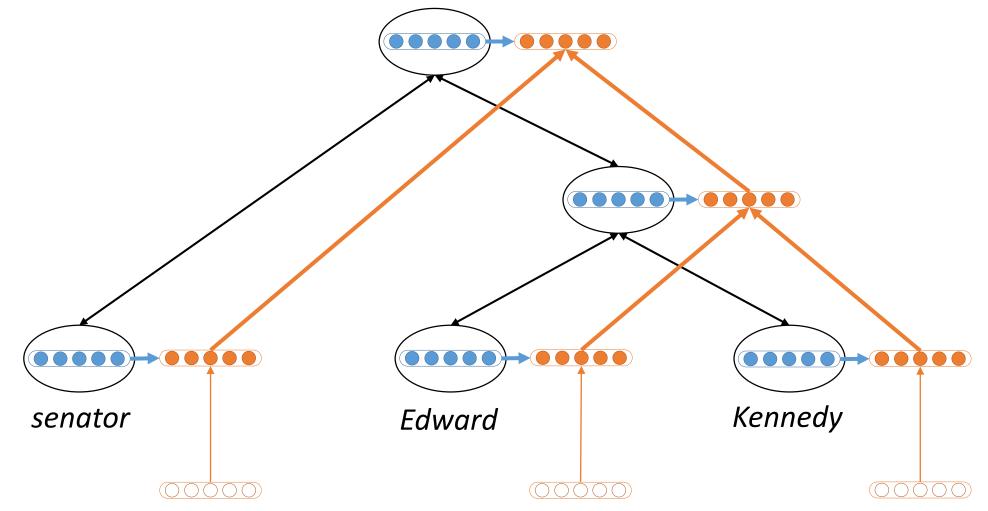




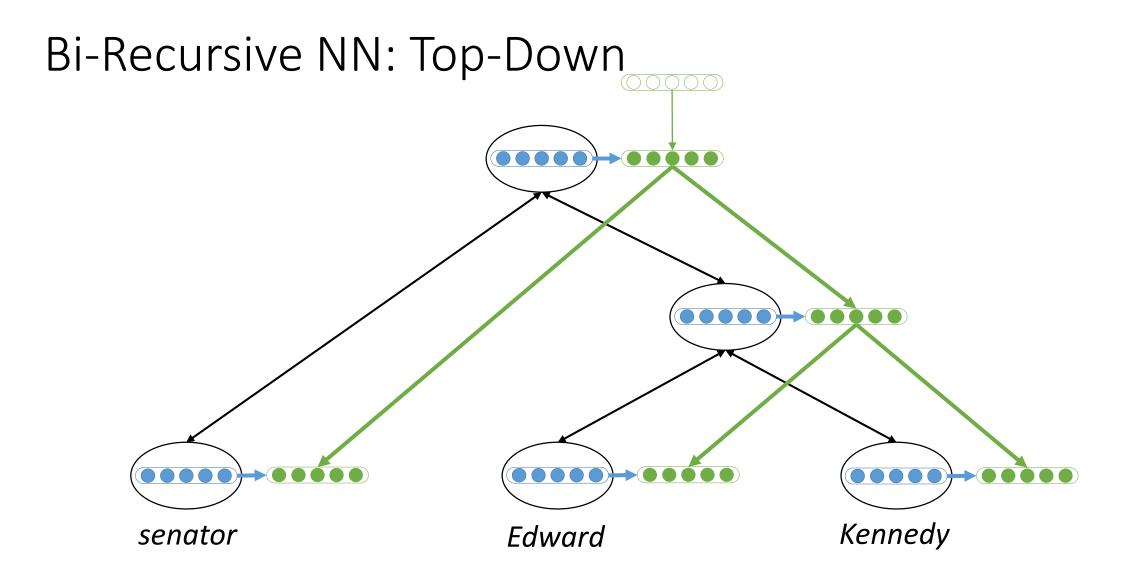
Feature Extraction



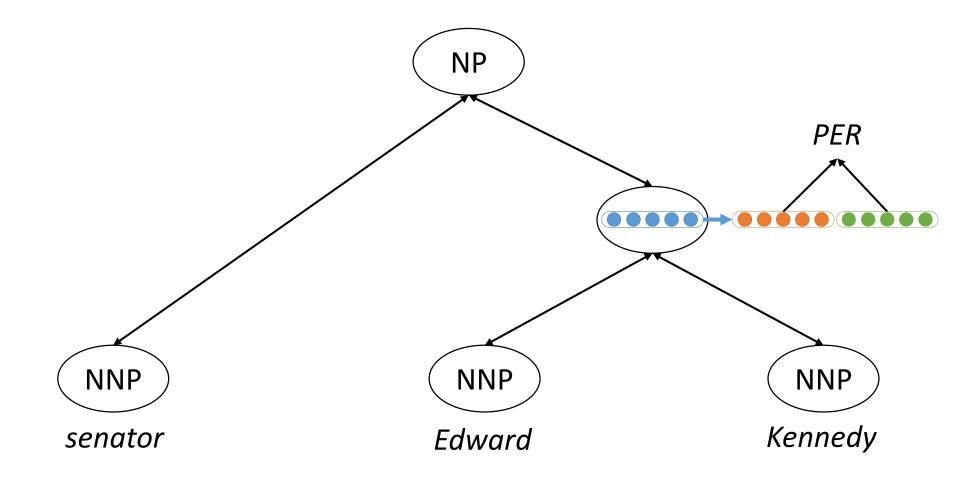
Bi-Recursive NN: Bottom-Up



Approach



Classification



Discovery Evaluation & Discussion

Seq-Recurrent vs. Constituency-Oriented BRNN

93% Consistency

97% Consistency

	<u>CoNLL 2003</u>			OntoNotes 5.0		
<u>Model</u>	Precision	<u>Recall</u>	<u>F1</u>	<u>Precision</u>	<u>Recall</u>	<u>F1</u>
Bi-Recurrent	-	-	-	85.7	86.5	86.10
Chiu and Nichols (2016)	91.4	91.9	91.62	-	-	86.41
BRNN(-CNN)	90.2	87.7	88.91	88.0	86.5	87.21

Constituent-Based vs. Constituency-Oriented

			OntoNotes 5.0		
Model	<u>Const-Only</u>	<u>Prediction</u>	<u>Precision</u>	<u>Recall</u>	<u>F1</u>
Bi-Recurrent	Х	the White	85.7	86.5	86.10
Bi-Recurrent	0	-	87.2	85.1	86.14
BRNN	0	White House	88.0	86.2	87.10

Ablation Study: Constituency Tree Binarization

		OntoNotes 5.0			
<u>Model</u>	<u>Binarize</u>	<u>Consistency</u>	<u>Precision</u>	<u>Recall</u>	<u>F1</u>
BRNN	Х	93%	87.3	83.0	85.11
BRNN	0	97%	88.0	86.2	87.10

Ablation Study: Dependency Transformation

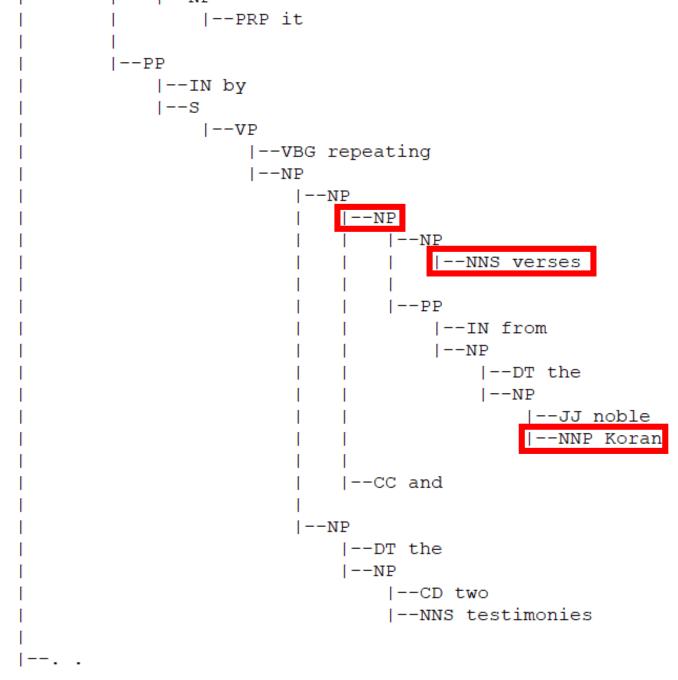
		<u>CoNLL 2003</u>		
<u>Model</u>	<u>Parser</u>	<u>Precision</u>	<u>Recall</u>	<u>F1</u>
BRNN	StanfordRNN	88.9	86.9	87.91
BRNN	SyntaxNet	90.2	87.7	88.91

Ablation Study: Pyramid Construction

		<u>CoNLL 2003</u>		
<u>Model</u>	<u>Pyramid</u>	<u>Precision</u>	<u>Recall</u>	<u>F1</u>
BRNN	Х	89.1	82.9	85.89
BRNN	0	90.2	87.7	88.91

Ablation Study: Bidirectional

		OntoNotes 5.0		
<u>Model</u>	<u>Koran</u>	<u>Precision</u>	<u>Recall</u>	<u>F1</u>
Top-Down	-	79.2	69.3	73.93
Bottom-Up	PERSON	86.6	86.2	86.41
BRNN	WORK OF ART	88.0	86.2	87.10



Discovery

Conclusion Contribution & Future Work

Recall: the Objectives

• Mitigate the inconsistencies between parsing and NER by restructuring algorithms

• Utilize prior linguistic structure information with constituent-based Bidirectional Recursive Neural Networks (BRNN)

Constituency-Oriented Approach: Contributions

- Elimination of type-1 inconsistencies by constituency binarization and dependency transformation
- Elimination of type-2 inconsistencies by pyramid construction
- Utilization of local structures with bottom-up recursive network
- Utilization of global structures with top-down recursive network

Future Work

Constituency-oriented approach for nested NEs: parsing biomedical text

• Constituency-oriented approach with one end-to-end model: backpropagation through parsing

• Constituency-oriented approach for identifying text chunks of interest: other than NEs