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Outline

• Named Entity Recognition
• Task

• Features

• Related Work

• Leveraging Linguistic Structures for NER
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Named Entities

• CoNLL-2003
• PER, LOC, ORG, MISC

• OntoNotes 5.0
• person, NORP, facility, organization, GPE, location, product, event, work-of-art, law, 

language
• date, time, percent, money, quantity, ordinal, cardinal
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The defense secretary Donald Rumsfeld

ORG PER



Gazetteer Features

• Senna
• PER

• LOC

• ORG

• MISC
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Word Features

• Embedding
• English -> 840B (common crawl)

• Chinese -> CNA (gigaword) + ASBC (sinica)

• Uppercase

• Upper-initial

• Lowercase

• Mixed
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Character Features

• Embedding
• English -> Random initialization

• Chinese -> CNA (gigaword) + ASBC (sinica)

• Uppercase

• Lowercase

• Digit
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Sequence Tagging
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The defense secretary Donald Rumsfeld

ORG PER

The defense secretary Donald Rumsfeld

O S-ORG O B-PER E-PER

Chunk Labels

B (begin)
I    (inside)
O  (outside)
E   (end)
S   (single)



Bi-LSTM for Sequence Tagging
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Jason Chiu and Eric Nichols. 2016. Named 
Entity Recognition with Bidirectional 
LSTM-CNNs. Transactions of ACL.



Dilated CNN for Sequence Tagging

Emma Strubell, Patrick Verga, David Belanger, and Andrew 
McCallum. 2017. Fast and Accurate Entity Recognition with 
Iterated Dilated Convolutions. In Proceedings of EMNLP.
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Results of Sequence Tagging
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Model Sources CoNLL-2003 OntoNotes 5.0

BLSTM

Huang et al., 2015
Chiu and Nichols, 2016

Ma and Hovy, 2016
Lample et al., 2016
Strubell et al., 2017

90.67 83.76

BLSTM-CRF 90.94 86.99

BLSTM-CNN 90.98 -

BLSTM-CNN-CRF 91.21 -

Deep BLSTM - 86.19

Deep-BLSTM-CNN - 86.41

ID-CNN-CRF Strubell et al., 2017 90.65 86.84



Outline

• Named Entity Recognition

• Leveraging Linguistic Structures for NER
• Joint parsing and NER

• Tree-LSTM for NER

• Mitigating inconsistencies between parsing and NER
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Constituent Prediction
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CRF-CFG for Constituent Prediction
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Jenny Rose Finkel and Christopher D. Manning. 2009. 
Joint Parsing and Named Entity Recognition. In 
Proceedings of HLT-NAACL.



Bi-Tree-LSTM for Constituent Prediction

14

Peng-Hsuan Li, Ruo-Ping Dong, Yu-Siang Wang, Ju-Chieh Chou, and Wei-Yun 
Ma. 2017. Leveraging Linguistic Structures for Named Entity Recognition 
with Bidirectional Recursive Neural Networks. In Proceedings of EMNLP.
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Bi-Tree-LSTM for Constituent Prediction
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senator Edward Kennedy



Bi-Tree-LSTM for Constituent Prediction
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senator Edward Kennedy



Bi-Tree-LSTM for Constituent Prediction
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Inconsistencies between Parse and NER
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NNPNNP NNP

NP

Taihang Mountain range

NNNNP

NP

NNP

NP

senator Edward Kennedy

LOCPER

Type-1
Cross Siblings

Type-2
Cross Branches

Peng-Hsuan Li. 2017. Leveraging Linguistic Structures for Named Entity Recognition 
with Bidirectional Recursive Neural Networks. Master’s Thesis, Department of 
Computer Science and Information Engineering, National Taiwan University.



Eliminate Type-1: Constituency Tree Binarization
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Eliminate Type-1: Dependency Transformation
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Ben           ate             a             cat

NNP VBD DT NN

root nobj
nsubj

det

DTNNP

nobj

VBD

nsubj

Ben           ate             a             cat

NN

det

No Constituents No Type-1 Inconsistencies



Eliminate Type-2: Pyramid Construction
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Taihang Mountain range
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Eliminate Type-2: Pyramid Construction
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Results of Constituent Prediction
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Method Model Sources CoNLL-2003 OntoNotes 5.0

Sequence Tagging

BLSTM

Huang et al., 2015
Chiu and Nichols, 2016

Ma and Hovy, 2016
Lample et al., 2016
Strubell et al., 2017

90.67 83.76

BLSTM-CRF 90.94 86.99

BLSTM-CNN 90.98 -

BLSTM-CNN-CRF 91.21 -

Deep BLSTM - 86.19

Deep BLSTM-CNN - 86.41

ID-CNN-CRF Strubell et al., 2017 90.65 86.84

Constituent Prediction
CRF-CFG Finkel and Manning, 2009 - 82.42

Bi-Tree-RNN-CNN Li et al., 2017 88.91 87.21



Analyses of Constituent Prediction

• Sequence Tagging vs. Constituent Prediction
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93% Consistency 97%/100% Consistency

Method CoNLL-2003 OntoNotes 5.0

Sequence Tagging 91.21 86.99

Constituent Prediction 88.91 87.21/88.92



Analyses of Constituent Prediction

• Sequence vs Tree
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the first couple moves out of the White House on January 20th .

OntoNotes 5.0

Model Const-Only Prediction Precision Recall F1

Bi-RNN X the White 85.7 86.5 86.10

Bi-RNN O - 87.2 85.1 86.14

Bi-Tree-RNN O White House 88.0 86.2 87.10



Ablation Study: Constituency Tree Binarization
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OntoNotes 5.0

Model Binarize Consistency Precision Recall F1

BRNN X 93% 87.3 83.0 85.11

BRNN O 97% 88.0 86.2 87.10



Ablation Study: Dependency Transformation
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CoNLL 2003

Model Parser Precision Recall F1

BRNN StanfordRNN 88.9 86.9 87.91

BRNN SyntaxNet 90.2 87.7 88.91



Ablation Study: Pyramid Construction
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CoNLL 2003

Model Pyramid Precision Recall F1

BRNN X 89.1 82.9 85.89

BRNN O 90.2 87.7 88.91



Ablation Study: Bidirectional
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OntoNotes 5.0

Model Koran Precision Recall F1

Top-Down - 79.2 69.3 73.93

Bottom-Up PERSON 86.6 86.2 86.41

BRNN WORK OF ART 88.0 86.2 87.10
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He confirmed it by repeating the verses from the noble Koran and the two testimonies.


